# 





# Muon magnetic anomaly measurement to 0.46 ppm at FNAL

Alberto Lusiani, for the FNAL Muon g-2 collaboration Scuola Normale Superiore and INFN, sezione di Pisa

Research Progress Meeting seminar at LBNL April 20, 2021







#### Introduction

for a particle p such as a muon, electron, proton, neutron



#### First $g_{\mu}$ measurement (1957)

motivation: confirm Lee & Yang predictions about parity violation in pion and muon decay

#### Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: the Magnetic Moment of the Free Muon\*

Richard L. Garwin,<sup>†</sup> Leon M. Lederman, and Marcel Weinrich

Physics Department, Nevis Cyclotron Laboratories, Columbia University, Irvington-on-Hudson, New York, New York (Received January 15, 1957)

L EE and Yang<sup>t-3</sup> have proposed that the long held space-time principles of invariance under charge conjugation, time reversal, and space reflection (parity) are violated by the "weak" interactions responsible for decay of nuclei, mesons, and strange particles. Their hypothesis, born out of the  $\tau-\theta$  puzzle,<sup>4</sup> was accompanied by the suggestion that confirmation should be sought (among other places) in the study of the successive reactions

$$\pi^+ \rightarrow \mu^+ + \nu$$
, (1)

$$\mu^+ \rightarrow e^+ + 2\nu$$
. (2)



#### $a_{\mu}$ measurements and predictions 1979 – March 2021 (incomplete collection)



#### $a_{\mu}$ measurements and predictions 1979 – March 2021 (incomplete collection)



# $a_{\mu}$ theory prediction status: 0.37 ppm precision

• Muon g-2 theory initiative White Paper, Phys. Rept. 887 (2020) 1-166

- ▶ consensus of large community of physicists after several years of collaboration
- ▶ significant recent progress on dispersive exp-data-driven calculation of HLbL contribution

| contribu        | uncertainty<br>[ppb]                                         |            |  |  |
|-----------------|--------------------------------------------------------------|------------|--|--|
| QED             | complete calculation to 5th order                            | 1          |  |  |
| QCD             | primarily non-perturbative                                   | 10         |  |  |
| - HVP<br>- HLbL | primarily dispersive to NNLO<br>dispersive to NNLO + lattice | 340<br>150 |  |  |
| total           |                                                              | 370        |  |  |



### $a_{\mu}$ Standard Model test more powerful than $a_{e}$ for QCD and New Physics

but

 $\begin{array}{l} a_{\mu} \text{ test } \sim 2000 \times \text{ less precise than } a_{e} \\ \text{for experimental and theory uncertainties} \\ \frac{\delta_{[\mathsf{Exp} \ + \ \mathsf{Th}]}a_{\mu}}{\delta_{[\mathsf{Exp} \ + \ \mathsf{Th}]}a_{e}} \sim 2000 \end{array}$ 

 $a_{\mu}$  test ~43000× more sensitive than  $a_{e}$  for "typical" New Physics models and QCD

$$\frac{\delta_{\rm [New Physics]} a_{\mu}}{\delta_{\rm [New Physics]} a_e} \sim \frac{m_{\mu}}{m_e^2} \simeq 43000$$

experiment and theory uncertainties contributions to  $a_{\mu}$  test as of March 2021

|                                                                           | δ <i>a<sub>μ</sub></i><br>[ppm]                      | δ <i>a<sub>e</sub></i><br>[ppb]      |
|---------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------|
| experiment                                                                | 0.54                                                 | 0.24                                 |
| theory<br>- α <sub>QED</sub><br>- QED<br>- EW<br>- QCD<br>- HVP<br>- HLbL | 0.37<br>0.00<br>0.00<br>0.01<br>0.37<br>0.34<br>0.15 | 0.20<br>0.20<br>0.01<br>0.00<br>0.01 |

note: using less precise  $\alpha_{\text{QED}}$  (Cs 2018) because of inconsistency with  $\alpha_{\text{QED}}$  (Rb 2020)

#### $a_{\mu}$ measurement method



#### Focusing electric field and magic energy

in presence of (focusing) electric field and motion not perfectly transverse to magnetic field  $\vec{\omega}_{a} = -\frac{e}{m_{\mu}} \begin{bmatrix} a_{\mu}\vec{B} & - & \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right)(\vec{\beta} \times \vec{E}) & - & a_{\mu}\frac{\gamma}{\gamma + 1}\left(\vec{\beta} \cdot \vec{B}\right)\vec{\beta} \end{bmatrix}$ 

#### CERN 1975-, BNL, FNAL

$$p_{\mu}^{\text{magic}} = 3.094 \, \text{GeV} \quad \Rightarrow \quad \gamma = 29.3$$
  
 $\Rightarrow \quad \left(a_{\mu} - \frac{1}{\gamma^2 - 1}\right) \simeq 0$ 



#### J-PARC E34





#### Rate of high-energy muon-decay electrons modulated with $\cos \omega_a t$



#### $a_{\mu}$ measurement method

measurement of magnetic field:  $\omega_p$ 

• proton spin precession frequency measures magnetic field (NMR):  $\hbar \omega_p = 2\mu_p B$ 

#### $a_{\mu}$ measurement

• (BNL E821 used a slightly different but equivalent procedure using  $\mu_p/\mu_\mu$  instead of  $\mu_p/\mu_e$ )

good approximation, with negligible differences, of ideal metrology procedure

• actual metrology input in CODATA fit from muon g-2 measurements is  $R_{\mu} = \omega_a/\omega_p$ 

• to obtain  $a_{\mu}$  from  $R_{\mu}$  one should do a special CODATA fit using just that  $R_{\mu}$  input

Muon magnetic anomaly measurement to 0.46 ppm at FNAL

# FNAL Muon g-2 project (a.k.a. FNAL-E989)

|                                                                                               | BNL E821                                    | FNAL E989                                 |                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\omega_a$ statistical<br>$\omega_a$ systematic<br>$\omega_p$ systematic<br>conversion factor | 460 ppb<br>210 ppb<br>170 ppb<br>negligible | 100 ppb<br>70 ppb<br>70 ppb<br>negligible | ×21 detected muon decays $(1.6 \cdot 10^{11})$<br>faster calorimeter with laser calibration, tracker<br>more uniform <i>B</i> , improve NMR measurement |
| total                                                                                         | 540 ppb                                     | 140 ppb                                   |                                                                                                                                                         |

#### FNAL Muon g-2 collaboration

USA

- Boston Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- North Central
- Northern Illinois
- Regis
- Virginia
- Washington

#### USA National Labs

- Argonne
- Brookhaven
- Fermilab



Shanghai Jiao Tong \_

# China Germany

- Dresden
- Mainz

#### Italy

- Frascati
- Molise
- Naples
- Pisa
- Roma Tor Vergata
- Trieste
- Udine

#### orea

- CAPP/IBS
- KAIST

#### Russia

 $\mathbf{H}$ 

- Budker/Novosibirsk
- JINR Dubna

#### United Kingdom

- Lancaster/Cockcroft
- Liverpool
- Manchester
- University College London



#### BNL storage ring magnet moved to FNAL in 2013 (35 days long trip)



# Storage ring magnet adjusted for maximum uniformity



#### Muon production, storage and decay at FNAL



#### Muon production, storage, decay and detection at FNAL



#### Muon decays detectors



- measure muon-decay electrons energy detecting Cherenkov light
- accurate gain monitoring with laser calibration system
- 2 straw chamber trackers with total of about 1000 channels
- reconstruct beam distribution inside storage ring from muon decay electrons

#### comparison with E821

- more granular calorimeter, faster data acquisition
  - improved calorimeter gain monitoring
- improved tracking

#### Measurement formula in more detail

$$\mathbf{a}_{\mu} = \left[\frac{\omega_{a}}{\tilde{\omega}_{p}'(T)}\right] \cdot \left[\frac{\mu_{p}'(T)}{\mu_{e}(H)}\right] \left[\frac{\mu_{e}(H)}{\mu_{e}}\right] \left[\frac{m_{\mu}}{m_{e}}\right] \left[\frac{g_{e}}{2}\right]$$

#### measurements by the Muon g – collaboration

| • | ω <sub>a</sub>                  | precession of muon spin relative to momentum rotation in magnetic field                                                                                                                                                            |
|---|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | ${\widetilde \omega}_{ ho}'(T)$ | precession frequency of shielded proton spin in spherical water sample at $T = 34.7 \text{ °C}$ in muon-beam-weighted magnetic field, $\tilde{\omega}'_p(T) = \langle \omega'_p(T)(x, y, \varphi) \times M(x, y, \varphi) \rangle$ |

#### notation

 $\mu'_{i}$ 

| ,( <i>T</i> ) magnetic momentum c | f proton in spherical | water sample at 34.7 °C |
|-----------------------------------|-----------------------|-------------------------|
|-----------------------------------|-----------------------|-------------------------|

#### external measurements

|  | $\mu_p'(T)/\mu_e(H)$ | 10.5 ppb | precision, | Metrologia | 13, 179 | (1977) | ) |
|--|----------------------|----------|------------|------------|---------|--------|---|
|--|----------------------|----------|------------|------------|---------|--------|---|

5 ppg (negligible) theory QED calculation, Rev. Mod. Phys. 88 035009 (2016)

 $\mu_e(H)/\mu_e \qquad 5 \text{ ppq (negligible}$   $m_\mu/m_e \qquad 22 \text{ ppb precision}$   $g_e/2 \qquad 0.28 \text{ ppt (negligible)}$ CODATA 2018 fit, primarily driven by LAMPF 1999 measurements of muonium hyperfine splitting, Phys. Rev. Lett. 82, 711 (1999)

0.28 ppt (negligible), Phys. Rev. Lett. 100, 120801 (2008)

# Conceptual formula for $R'_{\mu}(T) = \omega_a / \tilde{\omega}'_p(T)$



 $\omega_a$  measurement and correction

f<sub>clock</sub>

 $\blacktriangleright \omega_a^m$ 

► C<sub>e</sub>

► C<sub>n</sub>

► C<sub>pa</sub>

fcalib

 $\triangleright B_k$ 

 $\triangleright B_q$ 

correction for blinding clock offset

measured precession of muon spin relative to momentum rotation in magnetic field

- $\omega_a$  electric field correction
- $\omega_a$  pitch correction (vertical beam oscillations)
- $\omega_a$  muon loss correction
- $\omega_a$  phase acceptance correction

#### $\omega'_{p}$ T measurement and corrections

- magnetic field probes calibration
- $\omega'_p(x, y, \varphi)$  measured shielded proton spin precession frequency map in storage ring
- $M(x, y, \varphi)$  muon beam distribution
  - $\tilde{\omega}'_{\rho}(T)$  kicker eddy fields correction
    - $\tilde{\omega}'_{\rho}(T)$  electric quadrupoles transient field correction

#### Run 1 data samples

#### muon decays

| Dataset | # Days<br>(Apr-Jun 2018) | Tune (n) | Kicker<br>(kV) | # fills<br>[10 <sup>4</sup> ] | # positrons<br>[10 <sup>9</sup> ] |
|---------|--------------------------|----------|----------------|-------------------------------|-----------------------------------|
| 1a      | 3                        | 0.108    | 130            | 151                           | 0.92                              |
| 1b      | 7                        | 0.120    | 137            | 196                           | 1.28                              |
| 1c      | 9                        | 0.120    | 132            | 333                           | 1.98                              |
| 1d      | 24                       | 0.107    | 125            | 733                           | 4.00                              |

Total of 8.2 billion positrons ( $\sim$ 1.2× BNL),  $\sim$ 6% of E989 goal of 21× BNL 4 run periods with different kickers and quadrupoles settings, hence different beam dynamics

#### magnetic field

magnetic field measurements weighted by detected muon decays

# Blinding procedures $(f_{clock})$

- 40 MHz base nominal clock used for  $\omega_a$  data acquisition modified with random  $\pm 25\,\mathrm{ppm}$  offset
- secret offset conserved by two people outside the collaboration
- each Run is separately blinded
- second software blinding offset for each of the independent  $\omega_a$  analysis groups (honor-code based)



# blinded clock for 2018 Formi National Accelerator Laboratory P.O. Box 500 - Batavis, Illinois - 60510-050 IMPORTANT: 9-1 Clock Bliding DATE IN : 2/45/7018 DATE IN: Merentingel DATE 3/15/8\_ SIGNID IN: Merentingel DATE 3/15/8\_ SIGNID OCA: ALLY DATE 2/ 1/21

#### Reconstruction of positron energy deposits in calorimeters



#### Early to late effects



#### Run 1 difficulties

- two damaged resistors in one quadrupole increased high voltage switch-on time  $\Rightarrow$  quadrupole high voltage, hence beam position and spread, varied during the fill
- early-to-late variation of effective muon sample polarization phase
- varying CBO parameters had to be included in the fit model
- worse focusing of beam position and spread increased E-field and pitch corrections



Calorimeter gain variation, corrected in reconstruction

- SiPM gain is reduced by occurrence of preceding hits
- ▶ gain monitored by reading back reference laser light pulses injected in PbF<sub>2</sub> crystals
- positron energy measurement from SiPM readout corrected for average measured gain loss



#### Pileup statistically subtracted before fitting



#### Lost muons modeled in fit function

- some muons hit collimators and are lost
- muon loss rate during a fill measured with 3-4-5 coincidences of m.i.p. on calorimeters
- overall normalization of muon loss included as fit parameter



#### Muon precession, 5 parameters fit

5-parameters fit to number of positron decays with  $E > \sim 1.7$  GeV, binned over time, from 30 to 650  $\mu$ s  $N(t) = N_0 e^{-t/\tau} \left[1 + A \cos(\omega_a t + \varphi)\right]$ 



#### Muon precession, 22-parameters $\omega_a$ fit

- include beam dynamics oscillations of beam position and spread
- include effect of muon loss on collimators
- include effects of damaged quadrupole resistors

$$\begin{split} N_{0} e^{-\frac{t}{\gamma \tau}} \left(1 + A \cdot A_{BO}(t) \cos(\omega_{a} t + \varphi + \varphi_{BO}(t))\right) \cdot N_{\text{CBO}}(t) \cdot N_{\text{VW}}(t) \cdot N_{y}(t) \cdot N_{2\text{CBO}}(t) \cdot \Lambda(t) \\ A_{\text{BO}}(t) &= 1 + A_{A} \cos(\omega_{\text{CBO}}(t) \cdot t + \varphi_{A}) e^{-\frac{t}{\tau_{\text{CBO}}}} \\ \varphi_{\text{BO}}(t) &= A_{\varphi} \cos(\omega_{\text{CBO}}(t) \cdot t + \varphi_{\varphi}) e^{-\frac{t}{\tau_{\text{CBO}}}} \\ N_{\text{CBO}}(t) &= 1 + A_{\text{CBO}} \cos(\omega_{\text{CBO}}(t) \cdot t + \varphi_{\text{CBO}}) e^{-\frac{t}{\tau_{\text{CBO}}}} \\ N_{2\text{CBO}}(t) &= 1 + A_{2\text{CBO}} \cos(2\omega_{\text{CBO}}(t) \cdot t + \varphi_{2\text{CBO}}) e^{-\frac{t}{2\tau_{\text{CBO}}}} \\ N_{2\text{CBO}}(t) &= 1 + A_{2\text{CBO}} \cos(2\omega_{\text{CBO}}(t) \cdot t + \varphi_{2\text{CBO}}) e^{-\frac{t}{2\tau_{\text{CBO}}}} \\ N_{\text{VW}}(t) &= 1 + A_{\text{VW}} \cos(\omega_{\text{VW}}(t) \cdot t + \varphi_{\text{VW}}) e^{-\frac{t}{\tau_{\text{VW}}}} \\ N_{y}(t) &= 1 + A_{y} \cos(\omega_{y}(t) \cdot t + \varphi_{y}) e^{-\frac{t}{\tau_{y}}} \\ \Lambda(t) &= 1 - k_{LM} \int_{t_{0}}^{t} L(t') e^{t'/\tau} dt' \\ \omega_{\text{CBO}}(t) &= \omega_{0}^{\text{CBO}} + \frac{A}{t} e^{-\frac{t}{\tau_{A}}} + \frac{B}{t} e^{-\frac{t}{\tau_{B}}} \\ \omega_{y}(t) &= F \omega_{\text{CBO}}(t) \sqrt{2\omega_{c}/F\omega_{\text{CBO}}(t) - 1} \\ \omega_{\text{VW}}(t) &= \omega_{c} - 2\omega_{y}(t) \end{split}$$

#### 22 parameters $\omega_a$ fit has $\chi$ /n.d.o.f. consistent with 1



# 6 analysis groups, 4 analysis methods, 11 $\omega_a$ fits



# $R(\omega_a)$ Run 1 measurement inputs

#### Run 1a

| R Runia (ppb)               | CA         | EA         | 54         | WA.        | 27         | CT         | ET         | 57         | WT         | IR         | XQ         |
|-----------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| val                         | -20220.022 | -28481.292 | -20422.023 | -28637.307 | -28802.286 | -28211.122 | -20004.793 | -28739.823 | -20519.947 | -28966.786 | -29206.209 |
| usc                         | 1208.499   | 1201.164   | 1211.600   | 1221.056   | 1360.041   | 1330.227   | 1334.718   | 1335.002   | 1332.590   | 1361.011   | 2068.321   |
| stat                        | 1207.920   | 1193.750   | 1206.100   | 1218.350   | 1358.170   | 1337.677   | 1332.700   | 1331.350   | 1330.790   | 1359.010   | 2058.500   |
| ayat                        | 37.401     | 133.251    | 116.155    | 92.493     | 85.226     | 30.373     | 73.370     | 90.603     | 69.237     | 57.160     | 201.322    |
| Time randomization need     | 6.536      | 26.020     | 27.000     | 16.000     | 20.200     | 6.711      | 31.370     | 22.500     | 16.000     | 22.500     | 0.000      |
| Time correction             | 6.726      | 0.000      | 0.000      | 0.000      | 0.000      | 5.310      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Cluster time assignment     | 0.000      | 1.000      | 1.000      | 1.000      | 1.000      | 0.000      | 1.000      | 1.000      | 1.000      | 1.000      | 0.000      |
| In-fill gain amplitude      | 4.411      | 21.431     | 1.900      | \$4.300    | 7.790      | 3.905      | 23.620     | 2.500      | 15.300     | 2.718      | 5.000      |
| In-fill gain time constant  | 5.612      | 0.000      | 1.000      | 0.000      | 20.222     | 5.532      | 0.000      | 2.300      | 0.000      | 11.689     | 8.000      |
| STDP gain amplitude         | 0.177      | 0.099      | 0.000      | 2.600      | 0.091      | 0.005      | 0.103      | 0.000      | 0.800      | 0.053      | 0.000      |
| STDP gain time constant     | 0.734      | 0.000      | 0.000      | 0.000      | 0.000      | 0.145      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Pileup covariance matrix    | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 15.000     |
| Pileup amplitude            | 0.744      | 16.211     | 14.000     | 13.800     | 21.700     | 0.905      | 17.245     | 19.000     | 16.200     | 19.900     | 0.000      |
| Pileup cluster time model   | 0.000      | 58.921     | 47.000     | 0.000      | 5.100      | 0.000      | 12.502     | 8.500      | 0.000      | 6.400      | 0.000      |
| Pileup cluster energy model | 0.000      | 7.005      | 11.000     | 0.000      | 11.000     | 0.000      | 11.650     | 12.000     | 0.000      | 10.900     | 0.000      |
| Pileup phase                | 0.000      | 0.000      | 0.000      | 29.600     | 0.000      | 0.000      | 0.000      | 0.000      | 5.500      | 0.000      | 0.000      |
| Pileup time/energy bias     | 0.150      | 0.000      | 0.000      | 0.000      | 0.000      | 0.027      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Pileup rate error           | 0.033      | 0.000      | 0.000      | 0.000      | 0.000      | 0.193      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Unneen pileup               | 0.946      | 1.100      | 0.300      | 10.000     | 0.800      | 3.413      | 5.300      | 5.400      | 10.000     | 0.600      | 0.000      |
| Triple pileup correction    | 0.000      | 4.600      | 4.400      | 1.000      | 1.900      | 0.000      | 3.300      | 4.200      | 1.000      | 1.600      | 0.000      |
| Pileup simulation           | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 10.000     |
| Pileup artificial dead time | 0.000      | 67.700     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Loss covariance matrix      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Loss time cuts              | 0.808      | 0.000      | 1.000      | 0.000      | 0.300      | 0.876      | 0.000      | 1.000      | 0.000      | 0.300      | 0.000      |
| Loss energy cuts            | 0.000      | 0.000      | 0.500      | 0.000      | 0.500      | 0.000      | 0.000      | 0.500      | 0.000      | 0.300      | 0.000      |
| Loss statistics             | 1.596      | 0.000      | 0.000      | 0.000      | 0.000      | 1.522      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Loss detection efficiency   | 1.075      | 0.000      | 0.000      | 0.000      | 0.000      | 1.952      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Fixed loss scale            | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.900      | 0.000      |
| Righer-order coincidences   | 0.000      | 0.700      | 0.500      | 0.000      | 0.000      | 0.000      | 0.700      | 0.500      | 0.000      | 0.000      | 17.000     |
| CEO frequency change        | 5.630      | 11.600     | 7.100      | 19.000     | 10.900     | 4.299      | 9.800      | 5.600      | 17.000     | 5.300      | 5.500      |
| CBO decoherence envelope    | 24.046     | 29.700     | 19.700     | 25.000     | 38.300     | 23.226     | 22.000     | 17.500     | 26.500     | 5.500      | 4.100      |
| CBO time constants          | 4.145      | 14.200     | 2.000      | 11.000     | 10.000     | 8.079      | 2.700      | 2.000      | 13.000     | 10.800     | 6.000      |
| Fixed CEO time constant     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Vertical drift              | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 198.000    |
| Muon precession period      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 2.300      | 0.000      |
| Muon lifetime               | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
|                             |            |            |            |            |            |            |            |            |            |            |            |

| Run 1c                              |            |            |            |            |            |            |            |            |            |            |            |
|-------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| k Runic (ppb)                       | CA         | EA         | 54         | ¥A.        | 87         | CT         | ET         | 57         | WT         | IR.        | XQ         |
| ml                                  | -27553.151 | -27599.792 | -27744.007 | -27572.324 | -27917.094 | -28020.191 | -27888.992 | -27893.477 | -27898.924 | -27921.794 | -26279.397 |
| inc                                 | 824.775    | 820.274    | 025.993    | 834.914    | 932.719    | 912.905    | 909.385    | 909.687    | 909.909    | 934.158    | 1447.337   |
| stat                                | 823.995    | 814.609    | 822.380    | 830.450    | 930.105    | 912.601    | 905.720    | 908.410    | 907.900    | 932.710    | 1403.200   |
| iyat                                | 35.071     | 96.237     | 77.167     | 06.224     | 69.778     | 23.610     | 69.560     | 40.109     | 60.439     | 51.907     | 354.703    |
| Time randomization need             | 4.512      | 18.300     | 13.300     | 50.000     | 16.000     | 4.647      | 18.900     | 14.700     | 11.000     | 18.100     | 0.000      |
| Time correction                     | 1.178      | 0.000      | 0.000      | 0.000      | 0.000      | 1.142      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Cluster time assignment             | 0.000      | 1.000      | 1.000      | 1.000      | 1.000      | 0.000      | 1.000      | 1.000      | 1.000      | 1.000      | 0.000      |
| in-fill gain amplitude              | 2.076      | 9.006      | 3.700      | 13.100     | 4.529      | 3.404      | 9.947      | 6.000      | 12.000     | 1.404      | 4.000      |
| in-fill gain time constant          | 4.754      | 0.000      | 1.200      | 0.000      | 5.394      | 2.993      | 0.000      | 2.500      | 0.000      | 0.943      | 3.000      |
| STOP gain approval                  | 0.107      | 0.000      | 0.000      | 0.000      | 0.000      | 0.110      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Filmer generation of the constraint | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 45.000     |
| Dilana ambianda                     | 0.000      | 0.754      | 0.000      | 10.000     | 0.000      | 0.000      | 6.000      | 0.000      | 6.000      | 10,100     | 0.000      |
| Pilaun cluster time model           | 0.000      | 57 190     | 44,000     | 0.000      | 5.500      | 0.000      | 12,330     | 6 200      | 0.000      | 5 600      | 0.000      |
| Pileup cluster energy model         | 0.000      | 6 535      | 12 300     | 0.000      | 6 100      | 0.000      | 1 716      | 11.000     | 0.000      | 10.200     | 0.000      |
| Pilaup phase                        | 0.000      | 0.000      | 0.000      | 38,300     | 0.000      | 0.000      | 0.000      | 0.000      | 5 100      | 0.000      | 0.000      |
| Pilaun Time/anergy hing             | 0.147      | 0.000      | 0.000      | 0.000      | 0.000      | 0.027      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Pileup rate error                   | 0.119      | 0.000      | 0.000      | 0.000      | 0.000      | 0.119      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Unneen pileup                       | 0.335      | 1.100      | 2,800      | 10.000     | 2,500      | 1.446      | 0.600      | 5.000      | 10.000     | 2.500      | 0.000      |
| Triple pileup correction            | 0.000      | 3,900      | 3,600      | 1.000      | 1.000      | 0.000      | 1.360      | 2,300      | 1.000      | 1.100      | 0.000      |
| Pileup simulation                   | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 10.000     |
| Pileup artificial dead time         | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Loss covariance matrix              | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Loss time cuts                      | 1.094      | 0.000      | 1.000      | 0.000      | 0.500      | 1.173      | 0.000      | 1.000      | 0.000      | 0.100      | 0.000      |
| Loss energy cuts                    | 0.000      | 0.000      | 0.500      | 0.000      | 0.500      | 0.000      | 0.000      | 0.500      | 0.000      | 0.100      | 0.000      |
| Loss statistics                     | 0.728      | 0.000      | 0.000      | 0.000      | 0.000      | 0.697      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Loss detection efficiency           | 7.602      | 0.000      | 0.000      | 0.000      | 0.000      | 7.928      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Fixed loss scale                    | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 3.100      | 0.000      |
| Righer-order coincidences           | 0.000      | 0.700      | 0.500      | 0.000      | 0.000      | 0.000      | 0.800      | 0.500      | 0.000      | 0.000      | 2.000      |
| CEO frequency change                | 12.971     | 17.300     | 13.100     | 21.000     | 21.300     | 11.399     | 15.000     | 11.600     | 18.000     | 1.600      | 48.400     |
| CBO decoherence envelope            | 4.883      | 15.700     | 8.000      | 7.000      | 13.400     | 2.044      | 9.500      | 6.100      | 5.500      | 0.200      | 14.000     |
| CBO time constants                  | 7.536      | 15.900     | 6.000      | 9.000      | 23.400     | 4.965      | 35.500     | 12.000     | 25.000     | 30.900     | 28.000     |
| Fixed CEO time constant             | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.700      | 0.000      |
| vertical drift                      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 342.000    |
| muon precession period              | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 2.300      | 0.000      |
| Mach lifetime                       | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Ad hor correction                   | 04 400 L   | 17 0.00    | 4 000      |            | AL 44A     |            | 10.000     |            |            | 10.100     | 0.000      |

#### Run 1b

| R Runib (ppb)               | CA         | EA.        | SA         | 22         | 27         | CT         | ET         | ST         | WT         | 28         | 202        |
|-----------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| val                         | -26946.590 | -27021.291 | -27091.047 | -26965.693 | -27044.193 | -27209.341 | -27080.591 | -27001.927 | -27004.863 | -27209.293 | -24946.396 |
| usc                         | 1025.180   | 1018.880   | 1025.971   | 1035.843   | 1157.710   | 1135.268   | 1121.992   | 1129.788   | 1129.631   | 1150.404   | 1759.574   |
| stat                        | 1023.270   | 1012.020   | 1022.280   | 1030.180   | 1156.130   | 1133.504   | 1120.300   | 1128.100   | 1127.740   | 1157.420   | 1747.800   |
| ayat                        | 62.540     | 118.034    | 86.946     | 108.166    | 60.455     | 61.011     | 61.507     | 61.745     | 65.338     | 49.651     | 203.212    |
| Time randomization need     | 5.404      | 23.600     | 17.100     | 13.000     | 19.100     | 5.663      | 26.300     | 19.500     | \$4.000    | 20.500     | 0.000      |
| Time correction             | 1.473      | 0.000      | 0.000      | 0.000      | 0.000      | 1.024      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Cluster time assignment     | 0.000      | 1.000      | 1.000      | 1.000      | 1.000      | 0.000      | 1.000      | 1.000      | 1.000      | 1.000      | 0.000      |
| In-fill gain amplitude      | 2.373      | 6.475      | 6.400      | 20.900     | 3.282      | 3.857      | 6.662      | 3.500      | 22.600     | 0.529      | 4.000      |
| In-fill gain time constant  | 3.660      | 0.000      | 2.300      | 0.000      | 9.776      | \$0.372    | 0.000      | 7.700      | 0.000      | 3.231      | 2.000      |
| STDP gain amplitude         | 0.075      | 0.089      | 0.000      | 0.400      | 0.042      | 0.009      | 0.068      | 0.000      | 1.400      | 0.042      | 0.000      |
| STDP gain time constant     | 0.443      | 0.000      | 0.000      | 0.000      | 0.000      | 0.243      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Pileup covariance matrix    | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 15.000     |
| Pileup amplitude            | 0.489      | 14.033     | 12.000     | 12.500     | 11.400     | 0.018      | 6.644      | 10.600     | 7.000      | 11.400     | 0.000      |
| Pileup cluster time model   | 0.000      | 64.159     | \$3.000    | 0.000      | 4.600      | 0.000      | 14.223     | 7.200      | 0.000      | 4.000      | 0.000      |
| Pileup cluster energy model | 0.000      | 8.041      | 8.000      | 0.000      | 4.800      | 0.000      | 11.189     | 11.000     | 0.000      | 7.200      | 0.000      |
| Pileup phase                | 0.000      | 0.000      | 0.000      | 42.500     | 0.000      | 0.000      | 0.000      | 0.000      | 6.000      | 0.000      | 0.000      |
| Pileup time/energy bias     | 0.162      | 0.000      | 0.000      | 0.000      | 0.000      | 0.029      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Pileup rate error           | 0.017      | 0.000      | 0.000      | 0.000      | 0.000      | 0.004      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Unneen pileup               | 2.912      | 2.900      | 1.600      | 10.000     | 1.300      | 1.764      | 0.500      | 8.100      | 10.000     | 0.100      | 0.000      |
| Triple pileup correction    | 0.000      | 4.959      | 4.800      | 1.000      | 1.300      | 0.000      | 1.476      | 2.900      | 1.000      | 1.200      | 0.000      |
| Pileup simulation           | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 10.000     |
| Fileup artificial dead time | 0.000      | 60.900     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Loss covariance matrix      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Loss time cuts              | 1.490      | 0.000      | 1.000      | 0.000      | 0.100      | 1.451      | 0.000      | 1.000      | 0.000      | 0.100      | 0.000      |
| Loss energy cuts            | 0.000      | 0.000      | 0.500      | 0.000      | 0.100      | 0.000      | 0.000      | 0.500      | 0.000      | 0.500      | 0.000      |
| Loss statistics             | 0.770      | 0.000      | 0.000      | 0.000      | 0.000      | 0.727      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Loss detection efficiency   | 0.618      | 0.000      | 0.000      | 0.000      | 0.000      | 0.577      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Fixed loss scale            | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 3.400      | 0.000      |
| Righer-order coincidences   | 0.000      | 0.600      | 0.500      | 0.000      | 0.000      | 0.000      | 1.100      | 0.500      | 0.000      | 0.000      | 3.000      |
| CEO frequency change        | 14.216     | 12.200     | 12.500     | 18.000     | 22.500     | 12.135     | 11.200     | 11.800     | 15.000     | 0.700      | 16.000     |
| CEO decoherence envelope    | 2.490      | 7.500      | 2.800      | 10.000     | 3.700      | 8.044      | 13.700     | 2.900      | 7.000      | 9.100      | 1.000      |
| CEO time constants          | 41.000     | 2.600      | 11.000     | 45.000     | 23.100     | 36.225     | 3.500      | 9.000      | 30.000     | 21.000     | 8.000      |
| Fixed CEO time constant     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 2.000      | 0.000      |
| Vertical drift              | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 200.000    |
| Muon precession period      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 2.300      | 0.000      |
| Muon lifetime               | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Ad hoc correction           | 19.560     | 17.000     | 13.800     | 37.300     | 11.800     | 19.470     | 33.000     | 34.000     | \$4.700    | 15.300     | 0.000      |
|                             |            |            |            |            |            |            |            |            |            |            |            |

#### Run 1d

| R Runid (ppb)               | CA         | EA.        | SA         | 22         | 27         | CT         | ET         | ST         | WT         | 28         | XQ         |
|-----------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| val                         | -27590.211 | -27727.592 | -27694.497 | -27669.444 | -27701.994 | -27715.241 | -27877.192 | -27665.047 | -27714.364 | -27765.394 | -27990.498 |
| usc                         | 677.405    | 672.330    | 677.201    | 682.522    | 761.733    | 748.292    | 744.367    | 747.210    | 744.932    | 759.068    | 1288.346   |
| stat                        | 675.023    | 667.947    | 672.860    | 679.850    | 758.400    | 747.400    | 743.493    | 744.140    | 743.690    | 757.600    | 1269.000   |
| ayat                        | 46.264     | 76.641     | 76.558     | 60.337     | 71.176     | 36.532     | 36.069     | 67.757     | 42.992     | 47.107     | 222.428    |
| Time randomization meed     | 3.632      | 12.600     | 11.900     | 6.000      | 12.300     | 3.737      | 10.900     | 11.000     | 7.000      | 13.700     | 0.000      |
| Time correction             | 1.024      | 0.000      | 0.000      | 0.000      | 0.000      | 3.218      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Cluster time assignment     | 0.000      | 1.000      | 1.000      | 1.000      | 1.000      | 0.000      | 1.000      | 1.000      | 1.000      | 1.000      | 0.000      |
| In-fill gain amplitude      | 0.042      | 3.850      | 5.100      | 9.800      | 2.368      | 0.048      | 0.643      | 9.000      | 14.100     | 1.032      | 8.000      |
| In-fill gain time constant  | 0.694      | 0.000      | 3.300      | 0.000      | 13.293     | 0.008      | 0.000      | 7.300      | 0.000      | 6.585      | 2.000      |
| STOP gain amplitude         | 0.122      | 0.085      | 0.000      | 2.600      | 0.074      | 0.095      | 1.200      | 0.000      | 0.800      | 0.095      | 0.000      |
| STOP gain time constant     | 0.594      | 0.000      | 0.000      | 0.000      | 0.000      | 0.504      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Fileup covariance matrix    | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 15.000     |
| Pileup amplitude            | 0.355      | 8.009      | 7.000      | 6.300      | 10.100     | 0.348      | 10.378     | 5.600      | 9.500      | 9.400      | 0.000      |
| Pileup cluster time model   | 0.000      | 47.500     | 41.000     | 0.000      | 5.000      | 0.000      | 7.527      | 5.600      | 0.000      | 4.800      | 0.000      |
| Pileup cluster energy model | 0.000      | 7.000      | 7.000      | 0.000      | 10.000     | 0.000      | 0.439      | 10.000     | 0.000      | 6.000      | 0.000      |
| Pileup phane                | 0.000      | 0.000      | 0.000      | 34.900     | 0.000      | 0.000      | 0.000      | 0.000      | 4.400      | 0.000      | 0.000      |
| Pileup time/energy bias     | 0.101      | 0.000      | 0.000      | 0.000      | 0.000      | 0.019      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Pileup rate error           | 0.089      | 0.000      | 0.000      | 0.000      | 0.000      | 0.003      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Unnean pileup               | 0.142      | 0.800      | 3.500      | 10.000     | 4.100      | 0.232      | 0.700      | 0.200      | 50.000     | 2.400      | 0.000      |
| Triple pileup correction    | 0.000      | 4.637      | 3.900      | 1.000      | 1.600      | 0.000      | 2.330      | 1.400      | 1.000      | 1.300      | 0.000      |
| Pileup simulation           | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 10.000     |
| Pileup artificial dead time | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Loss covariance matrix      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Loss time cuts              | 2.035      | 0.000      | 1.000      | 0.000      | 0.100      | 2.024      | 0.000      | 1.000      | 0.000      | 0.500      | 0.000      |
| Loss energy cuts            | 0.000      | 0.000      | 0.500      | 0.000      | 0.100      | 0.000      | 0.000      | 1.000      | 0.000      | 0.500      | 0.000      |
| Loss statistics             | 0.802      | 0.000      | 0.000      | 0.000      | 0.000      | 0.778      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Loss detection efficiency   | 1.171      | 0.000      | 0.000      | 0.000      | 0.000      | 0.861      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Fixed loss scale            | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.500      | 0.000      |
| Righer-order coincidences   | 0.000      | 0.400      | 0.500      | 0.000      | 0.000      | 0.000      | 1.200      | 0.500      | 0.000      | 0.000      | 3.000      |
| CEO frequency change        | 0.634      | 25.000     | 13.300     | 23.000     | 22.200     | 0.606      | 1.400      | 0.500      | 21.000     | 8.500      | 33.000     |
| CEO decoherence envelope    | 38.083     | 5.000      | 3.200      | 1.000      | 25.300     | 32.052     | 9.600      | 9.200      | 1.500      | 18.000     | 38.000     |
| CEO time constants          | 7.053      | 0.600      | 1.000      | 2.000      | 10.500     | 3.316      | 0.800      | 8.000      | 6.000      | 9.000      | 3.000      |
| Fixed CBD time constant     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Vertical drift              | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 208.000    |
| Muon precession period      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 2.300      | 0.000      |
| Muon lifetime               | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Ad hoc correction           | 3.544      | 6.000      | 38.000     | 7.000      | 18.800     | 0.518      | 13.200     | 58.000     | 12.000     | 6.700      | 0.000      |
|                             |            |            |            |            |            |            |            |            |            |            |            |

#### Four analysis methods are consistent



#### Several other checks



#### Average of 11 ~critically correlated measurements with imprecise correlation



# Critical correlation: $C_{ij}^{\text{crit}} = \rho^{\text{crit}} = \min(\sigma_i, \sigma_j) / \max(\sigma_i, \sigma_j)$ $(i \neq j)$



### $\omega_a^m$ staged A-method average for measurements on same dataset

- A-method statistically optimal for ideal measurement with only Poisson uncertainties
  - in Run 1 we are close to these conditions because Poisson statistical uncertainties dominate
  - in this approximation, the optimal combination corresponds to just average the A-method measurements
  - $\Rightarrow$  combine just the 4 A-method measurements with equal weights, for each dataset
  - but, taking into account that there is some decorrelation due to using two reconstructions ⇒ average first A-measurements using the same reconstruction, then average across reconstructions

| $\omega_a^m$ uncertainties |                        |       |
|----------------------------|------------------------|-------|
|                            |                        | [ppb] |
|                            | total uncertainty      | 437   |
|                            | statistical            | 434   |
|                            | systematics            | 56    |
|                            | - Time randomization   | 9     |
|                            | - Gain                 | 8     |
|                            | - Pileup               | 35    |
|                            | - Muon Loss            | 3     |
|                            | - CBO                  | 38    |
|                            | - Early to late effect | 17    |

#### Electric field correction $C_e = +489 \pm 53 \text{ ppb}$

- compute momentum distribution from electrons detected at early times after injection
  - using cosine Fourier transform of rate vs. time
  - measuring change of shape of rectangular bunches (debunching)
- compute radial muon distribution from momentum distribution
- compute electric field contribution to ω<sub>a</sub> due to quadrupoles electric field
- Run 1 kicker strength was insufficient  $\Rightarrow$  extra radial displacement and  $C_e$



# Pitch correction $C_p = +180 \pm 13 \text{ ppb}$

reconstruct muon vertical position from decay electrons measurend on trackers

compute corresponding pitch correction to ω<sub>a</sub>



#### Lost muons phase-variation effect correction $C_{ml} = -11 \pm 5 \text{ ppb}$



# Phase-Acceptance correction $C_{pa} = -158 \pm 75 \text{ ppb}$

effective phase variation due to variation of beam horizontal and vertical position and spread example:  $\Delta \omega_a = \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \frac{\mathrm{d}\varphi}{\mathrm{d}Y_{\mathrm{RMS}}}$  $dY_{\rm RMS}$ dt obtained with simulation measured with trackers and extrapolated to whole ring with beam dynamics simulations phase as a function of muon position variation of  $Y_{\rm RMS}$ 15 Decay y [mm] Vertical RMS Beam Size [mm] (b) 40 -10 14.5 Detected Phase [mrad] 20 -20 14 -30 13.5 0 -40 13 -20 -50 12.5 -40 -60 12 50 100 150 200 250 300 -20 20 40 -40 0 Decay x [mm] Time [us]

# Measuring the magnetic field with fixed and trolley probes



- $\blacktriangleright$  378 fixed probes measure continuosly the magnetic field
- $\blacktriangleright$  17-probes trolley run along muons path every  ${\sim}3\,$  days
- fixed probes measurements corrected using trolley measurements



#### Measuring the magnetic field: calibration of probes

#### calibration

- each trolley probe calibrated with absolute cylindrical probe placed in the same position inside the storage ring
- absolute cylindrical probe calibrated to reference absolute spherical probe in MRI magnet at Argonne National Laboratory
- absolute spherical probe consistent with novel absolute <sup>3</sup>He probe
- 17 probes calibration uncertainty 20 48 ppb

#### reference temperature

 magnetic field measurements corrected to be expressed as ω'<sub>p</sub>(T), precession frequency of shielded proton spin in spherical water sample at reference temperature of 34.7 °C

# COS TON

absolute spherical probe

#### Compute the magnetic field experienced by the muons to 56 ppb

- tracker reconstructs muons decay vertices in parts of storage region
- bean dynamics simulation used to extrapolate to whole storage region
- magnetic field map averaged over muon distribution
- two independent groups did the measurement, one additional group the calibration



# Quadrupoles transient field correction $B_q - 17 \pm 92 \text{ ppb}$

- quadrupoles are pulsed (to prevent static charge accumulation)
- plates vibration perturbs magnetic field
- special NMR probes measure the transient field perturbation in muon region
- large uncertainty because mapping incomplete will improve in Run 2+



#### Kicker transient field correction $B_k = -27 \pm 37 \text{ ppb}$

- kicker pulsed before start of fit window
- induced eddy currents perturb magnetic field inside fit window
- magnetic field perturbation measured with a Faraday effect magnetometer



# All corrections and uncertainties estimated before unblinding

|                                                                              | Correction | Uncertainty | Design goal |
|------------------------------------------------------------------------------|------------|-------------|-------------|
| $\omega_a^m$ (statistical)                                                   | -          | 434         | 100         |
| $\omega_a^m$ (systematic)                                                    | -          | 56          |             |
| base clock                                                                   | -          | 2           |             |
| C <sub>e</sub>                                                               | 489        | 53          |             |
| $C_p$                                                                        | 180        | 13          |             |
| Ć <sub>ml</sub>                                                              | -11        | 5           |             |
| $C_{pa}$                                                                     | -158       | 75          |             |
| $\omega_a$ beam dynamics corrections $(C_e + C_p + C_{ml} + C_{pa})$         | 499        | 93          |             |
| $\omega_a$ total systematic                                                  | 499        | 109         | 70          |
| $\omega_p'(T)(x, y, \varphi)$                                                | -          | 54          |             |
| $\dot{M}(x,y,\varphi)$                                                       | -          | 17          |             |
| $\overline{\langle \omega_p'(T)(x,y,\varphi) \times M(x,y,\varphi) \rangle}$ | -          | 56          |             |
| B <sub>a</sub>                                                               | -17        | 92          |             |
| $B_k^{\prime}$                                                               | -27        | 37          |             |
| ${\widetilde \omega}_{ ho}'(T)$ transient fields corrections $(B_q+B_k)$     | -44        | 99          |             |
| $	ilde{\omega}_p'(	au)$ total                                                | 44         | 114         | 70          |
| $\omega_a/\tilde{\omega}_p'(T)$ total systematic                             | 544        | 157         | 100         |
| external measurements                                                        | -          | 25          |             |
| total [correction is for $\omega_a/	ilde{\omega}_p'(T)$ ]                    | 544        | 462         | 140         |

# $\omega_a, \tilde{\omega}_p^{\prime T}$ for the four Run 1 datasets



#### We decided to unblind in a remote meeting of the whole collaboration



#### First FNAL Muon g-2 result



included correlation due to external measurements, assumed no other correlation between BNL and FNAL

#### Three papers published on April 7, 2021, a fourth one accepted



Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm doi:10.1103/PhysRevLett.126.141801

Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g-2 Experiment doi:10.1103/PhysRevD.103.072002

Magnetic Field Measurement and Analysis for the Muon g-2 Experiment at Fermilab doi:10.1103/PhysRevA.103.042208

Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab arXiv:2104.03240 [physics.acc-ph]





# **Backup Slides**

| and have a set of the |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

#### $a_{\mu}$ measurements and predictions 1979 – April 2021 (incomplete collection)



# Muon g-2/EDM experiment at J-PARC



- silicon tracker instead of calorimetry
- ► 5.7·10<sup>11</sup> reconstructed electrons
- 0.45 ppm statistical uncertainty goal

# Main $\omega_a$ measurement systematics mentioned in E989 TDR

|              | E821<br>[ppb] | E989 improvement plans                                         | goal<br>[ppb] | Run 1<br>[ppb] |
|--------------|---------------|----------------------------------------------------------------|---------------|----------------|
| gain changes | 120           | better laser calibration<br>low-energy threshold               | 20            | 20             |
| pileup       | 80            | low-energy samples recorded calorimeter segmentation           | 40            | 35             |
| lost muons   | 90            | better collimation in ring                                     | 20            | 5              |
| СВО          | 70            | higher n value (frequency)<br>better match of beamline to ring | <30           | 38             |
| E and pitch  | 50            | improved tracker<br>precise storage ring simulation            | 30            | 55             |
| total        | 180           |                                                                | 70            | 109            |

#### Investigations on T-A bias extended to Run 2

